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Abstract 

Background: Interpretation of health-related quality of life (QOL) outcomes requires improved methods to control 
for the effects of multiple chronic conditions (MCC). This study systematically compared legacy and improved method 
effects of aggregating MCC on the accuracy of predictions of QOL outcomes.

Methods: Online surveys administered generic physical (PCS) and mental (MCS) QOL outcome measures, the Charl-
son Comorbidity Index (CCI), an expanded chronic condition checklist (CCC), and individualized QOL Disease-specific 
Impact Scale (QDIS) ratings in a developmental sample (N = 5490) of US adults. Controlling for sociodemographic 
variables, regression models compared 12- and 35-condition checklists, mortality vs. population QOL-weighting, 
and population vs. individualized QOL weighting methods. Analyses were cross-validated in an independent sample 
(N = 1220) representing the adult general population. Models compared estimates of variance explained (adjusted  R2) 
and model fit (AIC) for generic PCS and MCS across aggregation methods at baseline and nine-month follow-up.

Results: In comparison with sociodemographic-only regression models (MCS  R2 = 0.08, PCS = 0.09) and Charlson 
CCI models (MCS  R2 = 0.12, PCS = 0.16), increased variance was accounted for using the 35-item CCC (MCS  R2 = 0.22, 
PCS = 0.31), population MCS/PCS QOL weighting  (R2 = 0.31–0.38, respectively) and individualized QDIS weighting 
 (R2 = 0.33 & 0.42). Model  R2 and fit were replicated upon cross-validation.

Conclusions: Physical and mental outcomes were more accurately predicted using an expanded MCC checklist, 
population QOL rather than mortality CCI weighting, and individualized rather than population QOL weighting for 
each reported condition. The 3-min combination of CCC and QDIS ratings (QDIS-MCC) warrant further testing for 
purposes of predicting and interpreting QOL outcomes affected by MCC.

Keywords: Disease-specific outcomes, Health-related quality of life, Comorbid conditions, Quality of life disease 
impact scale (QDIS), Charlson comorbidity index (CCI)
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Introduction
Over a quarter of US adults (27.2%) have been diagnosed 
with multiple chronic conditions (MCC) that adversely 
impact health status, functioning, or health-related qual-
ity of life (QOL), with greater prevalence among women, 
non-Hispanic white adults, those over age 65, and those 
living in rural areas [1]. One-third have three or more. 
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Because MCC are predictive of mortality, disability, 
response to treatment, health care utilization, expendi-
tures, and declines in QOL (particularly physical QOL) 
[2], case mix adjustments for differences in MCC have 
become essential in health outcomes and effectiveness 
research.[3–9]. As noted with the first clinical definition 
of comorbidity[10] and other clinimetric principles used 
in developing the first comorbidity indices[11], MCC 
data can also enhance the staging of individual patient 
complexity, aid in treatment planning, and improve appli-
cation of quality of care guidelines [12–14]. Therefore, 
more accurate estimates of MCC impact have potential 
for improving adjustments for case mix differences in 
comparative effectiveness research and provider outcome 
comparisons [12–17], and play a critical role in improv-
ing patient care by identifying individuals most likely to 
benefit from specific treatments/services [18, 19].

QOL is a patient-reported outcome (PRO) of particu-
lar importance in the movement toward patient-centered 
care and shared decision-making. While the relevance 
of QOL status and outcomes is straightforward, their 
clinical utility is predicated on the use of reliable and vali-
dated measurement that is sensitive to change[20] and 
satisfies other clinimetric principles [11, 21, 22]. QOL 
assessments fall into two categories—generic or disease-
specific measures. One major difference between these 
measurement categories is whether QOL is attributed 
to a specific disease or diagnosis [23, 24]. Generic QOL 
measures have the advantage of enabling comparisons of 
disease burden across MCC, while disease-specific QOL 
measures provide greater responsiveness to a specific 
condition [23]. As hypothesized decades ago[23], dis-
ease-specific QOL measures that summarize the impact 
attributed to one disease have been shown to be a sub-
stantial improvement in clinical usefulness compared to 
generic measures of the same QOL domains [25–27].

At the heart of all disease-specific QOL impact attri-
butions is the assumption that patients can validly parse 
the impact of any one of their conditions in the pres-
ence of MCC, a common situation in the interpretation 
of outcomes. This assumption has been supported by 
comparisons of the validity of specific and generic meas-
urement methods within a given clinical condition [28, 
29], including a large US chronically ill population study 
results showing significant convergent and discriminant 
validity across 90% of 924 tests of MCC within nine pre-
identified disease conditions. Specifically, tests compar-
ing correlations among different methods (e.g., clinical 
markers and disease-specific QOL ratings) measuring 
the same condition (i.e., convergent validity) were sub-
stantial in magnitude and significantly higher than cor-
relations between comorbid diseases measured using the 
same method (i.e., discriminant validity) [27]. Notably, 

previous evaluations of validity for a specific condition 
have almost always been limited to convergent evidence, 
i.e., that different methods measuring the same condition 
reach substantial agreement.

Thus far, the assessment of MCC impact has been hin-
dered by a proliferation of diverse measures and a dearth 
of studies addressing the practical implications of differ-
ences across MCC assessment methods. For example, 
legacy methods for aggregating MCC have been based 
on simple condition count, which ignores differences 
between conditions and assumes that the impact of each 
condition is the same for all who have it [2, 9, 17, 30–33]. 
Methods addressing those differences have weighted 
conditions on a population level using criteria such as 
mortality [2, 34] or health care utilization [24]. Among 
the first MCC measures to recognize the importance 
of both the number of conditions and the differences in 
their impact, the Charlson Comorbidity Index (CCI) [34] 
has been the most frequently and extensively studied [2]. 
The Elixhauser alternative expands the list of conditions 
[35]. While shown to be useful for some case mix adjust-
ment purposes, these indexes have been criticized for 
their reliance on mortality weighting, omission of preva-
lent and morbid conditions, and assignment of the same 
population weight to everyone with a given condition. 
Emphasis on generic QOL outcomes monitoring and evi-
dence regarding the substantial impact of prevalent and 
morbid conditions (e.g. osteoarthritis, back problems, 
depression) omitted from the CCI are known to affect the 
generic physical, psychological, and social QOL domains 
[2].

In response, QOL-based patient reported outcome 
(PRO) monitoring research has spawned several advances 
in MCC assessment methods, including approaches 
using (1) models that standardize disease-specific QOL 
impact scoring across different conditions, (2) a sum-
mary disease-specific impact score aggregating across 
QOL domains (i.e., simplified 1-factor scoring), (3) IRT-
based calibrations of single and multi-item measure scor-
ing across diseases [24, 25, 36, 37], and (4) items proven 
to discriminate QOL impact for a given condition in the 
presence of other comorbid conditions. Scoring can dis-
tinguish between comorbidity, or impact in the context of 
an “index” condition in tertiary and secondary care set-
tings, and multimorbidity (total QOL impact in primary 
care and other generalist settings). [38, 39]

Until recently, a lack of standardization of QOL content 
and scoring across disease-specific QOL measures has 
impeded meaningful comparisons across conditions and 
aggregation of total MCC QOL impact. Prior work has 
addressed this issue with disease-specific QOL assess-
ments reflecting the richness of widely-used generic 
QOL surveys and standardized across diseases with 
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items differing only in terms of disease-specific attribu-
tions for QOL impact [25, 40].

The practical implications of a single factor disease-
specific measurement model leaving very little disease-
specific QOL shared item variance unexplained[36, 37] is 
that it enables a summary score for each condition with 
minimal loss of information and reduced respondent bur-
den in comparison with multiple scores for each condi-
tion [24, 37]. Other practical implications include greater 
measurement efficiency, standardized comparisons of 
disease-specific QOL burden, improved aggregation of 
QOL impact across MCC, and adaptive disease-specific 
QOL assessments [24, 25, 27, 41]. Results showing high 
single item correlations with individualized disease-spe-
cific QOL item bank total scores enabled further reduc-
tion in respondent burden for estimating MCC impact 
for each individual [24, 26, 27, 36, 37]. Finally, measures 
such as the QDIS-MCC used in the current study reflect 
an advance, with rare exceptions, in both convergent and 
discriminant validity for priority MCC [27, 28, 42].

This paper examines whether an expanded condi-
tion checklist, population QOL-weighting (in contrast 
to mortality weighting), and use of each patient’s own 
QOL impact rating (individualized ratings in contrast to 
population weights for their MCC) improve predictions 
of generic QOL outcomes. To date, these methods have 
only been tested on small [43–45] or age-restricted sam-
ples.[46]. This is the first study to systematically compare 
legacy and improved methods for aggregating the impact 
of MCC with the goal of better understanding their 
effects on the accuracy of predictions of generic physical 
and mental QOL status and outcomes.

Materials and methods
Data was obtained from US adults completing internet 
surveys as part of the Computerized Adaptive Assess-
ment of Disease Impact (DICAT) study, which sought to 
develop and evaluate standardized disease-specific QOL 
measures to aggregate impact across MCC. This study 
was approved by the New England Institutional Review 
Board; details regarding sampling and data collection 
methods are published elsewhere [24]. Briefly, inde-
pendent samples from an ongoing GfK research panel of 
approximately 50,000 adults were drawn in three waves 
at different times in 2011, with email and automated 
telephone reminders sent to non-responders. Cross-
sectional data was collected from new participants in all 
waves; those recruited in the first two waves completed 
longitudinal surveys at six- and nine-month follow-up.

Developmental sample
The first analytic sample consisted of adults previ-
ously diagnosed with any of nine chronic conditions 

(pre-ID group) plus a random subset of general popula-
tion respondents (N = 350) who endorsed zero chronic 
condition checklist items to enable a comparison group 
(i.e., the intercept of the regression models). Pre-ID 
conditions were categorized in five groups: arthritis 
(osteoarthritis [OA], rheumatoid [RA]), chronic kidney 
disease (CKD), cardiovascular disease (angina, myocar-
dial infarction [MI] in past year, congestive heart fail-
ure [CHF]), diabetes, and respiratory disease (asthma, 
chronic obstructive pulmonary disease [COPD]). Of the 
9160 pre-ID panelists invited to participate, 6828 opened 
the informed consent screen (74.5%), 5585 consented, 
and 5418 completed surveys (survey completion rate 
97.0%). Panelists were sampled to achieve at least 1000 
respondents within three priority disease groups, with 
smaller targets for less prevalent diagnoses (CKD, cardio-
vascular). Conditions were confirmed at the start of the 
internet survey. All MCC aggregation models were devel-
oped and compared with this sample.

Cross‑validation sample
The second analytic sample represented the US gen-
eral adult population, including those with and with-
out chronic conditions in their naturally occurring 
proportions. Of the 10,128 panelists sent invitations, 
6433 (63.5%) opened the informed consent screen, 5332 
consented, and 5173 completed surveys (survey comple-
tion rate 97.0%). As noted above, 350 randomly selected 
participants reporting no chronic conditions were 
excluded from cross-validation analyses due to their 
inclusion in the developmental sample for comparison 
purposes. Remaining general population data were ana-
lyzed to cross-validate all cross-sectional and longitudi-
nal models.

Measures & protocol
Survey items (modules) varied by design within samples 
and recruitment waves [24]. Random assignment to sur-
vey protocols within each wave enabled comparisons of 
longer and shorter survey modules (i.e., full length or 
fast track) to test the effects of differences in respond-
ent burden (median total time limited to ≤ 25  min). For 
all protocols, modules were administered in the follow-
ing order: generic QOL measures, chronic condition 
checklist, QOL disease-specific (QDIS) items, and legacy 
disease-specific measures (developmental sample only). 
Internet-based electronic data collection (EDC) allowed 
data quality to be monitored in real time. EDC date and 
timestamp estimates were used to estimate respondent 
burden for all forms. Completeness of survey responses 
was not an issue: QDIS items had missing data rates of 
0.6–1.4%.
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Generic QOL measures
All panelists completed the SF-8™ Health Survey [47], 
used to estimate favorably-scored generic physical (PCS) 
and mental (MCS) component summaries at all time 
points [48]. A random 40% subsample also completed 
the SF-36® Health Survey [49] to replicate PCS and MCS 
results using more reliable 36-item estimates. All PCS 
and MCS scores were normed to have mean = 50 and 
SD = 10 using standardized developer scoring; SF-8 and 
SF-36 estimates were highly correlated (0.899 and 0.868, 
respectively), as in previous studies [47, 49, 50].

MCC presence and disease‑specific impact measures
Disease-specific QOL measures included the Charl-
son Comorbidity Index (CCI) [34] and QOL-weighted 
Disease Impact Scale for Multiple Chronic Conditions 
(QDIS-MCC) using responses to a 35-item chronic con-
dition checklist based on the National Health Interview 
Survey (NHIS) [51], Medicare Health Outcomes Survey 
[52], and US department of Health and Human Services 
(HHS) priorities [42] with common self-report instruc-
tions. Specifically, the checklist asks if a doctor or other 
health professional had ever told the respondent they 
had or currently have any of the listed conditions. For 
each condition endorsed, the CCI applied population 
mortality weights and the QDIS-MCC administered a 
global QOL Disease-specific Impact Scale (QDIS) item 
asking “In the past 4  weeks, how much did your < con-
dition > limit your everyday activities or your quality of 
life?” with categorical response choices ranging from Not 
at all to Extremely, scored to indicate greater impairment 
in QOL [24, 37].

As illustrated in the appended paper–pencil form (see 
Additional file  1), the current study administered items 
for each condition on the left side using a skip pattern, 
presenting a global impact item for each endorsed con-
dition. Individualized QDIS-MCC scores were calculated 
for each respondent by summing global impact scores 
across all endorsed conditions. Thus, both CCI and 
QDIS-MCC total scores reflect the number of conditions 
reported and their impact on each individual. They dif-
fer in multiple respects, as documented in Table  3. The 
global QDIS item used to estimate disease-specific QOL 
impact in this study has been shown to be consistently 
correlated highly (r > 0.80) with the same-disease QDIS 
item bank score and significantly lower (r < 0.40) with 
item bank scores for comorbid conditions [24, 37]. As 
noted above, tests of convergent validity across multiple 
methods (clinical, QOL) for measuring each condition 
and discriminant validity across conditions for the global 
QDIS item using multitrait-multimethod analyses sub-
stantially support its ability to distinguish QOL impact 

for one condition (e.g. OA) in the presence of comorbid 
conditions (e.g., asthma and diabetes), with rare excep-
tions [27, 28].

To facilitate interpretation by disease condition and 
other demographic groups, QDIS scale scores were nor-
med in 2010 in representative samples of the U.S. chroni-
cally ill population and transformed to have mean = 50, 
SD = 10) [25]. Scores above and below 50 are above and 
below the chronically ill population average across all 
conditions and can be evaluated easily in SD units. The 
same linear T-score transformation has been applied 
to the aggregate individualized QDIS-weighted MCC 
impact score in the US chronically ill population cross 
validation sample (Table 3).

Demographic covariates
Baseline regression models controlled for 16 categories 
including age (18–34, 44–54, 45–54, 55–64, 65–74, 75 +), 
gender, race/ethnicity (white non-Hispanic, black non-
Hispanic, Hispanic, other non-Hispanic) and education 
(less than high school graduate, high school graduate, 
post-high school education, college graduate or higher).

Analytic plan
Aim 1: systematic evaluation of different methods 
of aggregating disease‑specific QOL impact in estimating 
generic patient‑reported outcomes
As in previous studies [53–55], ordinary least squares 
regression models, controlling for respondent character-
istics, predicted PCS and MCS using both cross-sectional 
and longitudinal data. Systematic comparisons exam-
ined multiple methods of MCC aggregation, including 
condition counts, population-weighted scores, and an 
extension of these models that included each individual’s 
responses to global QDIS items (individualized score; see 
Table  1). This allowed for a number of model compari-
sons between legacy and newer aggregation methods, 
including:

• Addition of simple count of 35 (#1) or 12 (Charlson) 
conditions (#1C) to sociodemographic-only base 
model (#0)

• Simple counts (#1) vs. population weights (#2-M and 
#2-P)

• Population QOL or mortality weights (#2 and #2C) 
vs. individualized QDIS ratings (#3 and #3C)

Population weights were derived independently for 
PCS and MCS in the developmental sample using regres-
sions of dummy variables (yes = 1/no = 0) for each con-
dition. These weights, which were applied to the 35 yes/
no condition indicators (Model #2-M, 2-P) reflect the 
number of MCC and the average population impact of 
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each disease on MCS and PCS controlling for all other 
conditions. For individualized models (#3 and #3C, 
respectively, for 35 and 12 conditions) QDIS ratings 
were summed for conditions reported. For all models, 16 
dummy variables controlled for categories of four soci-
odemographic characteristics: age, gender, race/ethnic-
ity, and education. Model methods were ordered on the 
basis of their hypothesized incremental validity [56, 57], a 
type of validity used to empirically test how much a new 
method will improve predictive ability beyond what is 
provided by an existing method. Cross-sectional analy-
ses combined participant baseline data obtained at study 
entry across waves. To test how well current MCC esti-
mates predicted future health, longitudinal models used 
general population baseline data (including weights) to 
predict PCS and MCS at nine-month follow-up.

To standardize comparisons between mortality 
weighted and QOL weighted model effects, both were 
limited to the 12 conditions common to the Charlson 
(CCI) [34] and 35-condition checklist, as identified 

in Table  4. Some noteworthy constraints applied to 
all CCI models. As with other studies reliant on self-
reported CCI data [58], the 35-condition checklist did 
not include Charlson peripheral vascular disease or 
dementia and definitions for common conditions some-
times varied. Hemiplegia was counted if a stroke and 
limitations in the use of an arm or leg (missing, para-
lyzed, or weakness) was reported. Data was not avail-
able to distinguish between mild and severe CCI levels 
for diabetes, liver disease, and cancer. All were conserv-
atively scored at the lower CCI level, consistent with 
other studies [59]. Kidney disease was based on partici-
pant report of serum creatinine and converted to the 
estimated glomerular filtration rate; [60] participants 
with eGFR < 60 were classified as having kidney disease. 
Due to DICAT study design, serum creatinine was only 
available for the participants in the developmental sam-
ple pre-identified with CKD; kidney disease was not 
included as a condition in cross-validation analyses.

Table 1 Summary and description of QDIS-MCC, legacy, and Charlson impact estimation methods and models compared

MCC = multiple chronic conditions, pop. = population, ind. = individualized, PCS = Short Form-8 Physical Component Score, MCS = Short Form-8 Mental Component 
Score

Model contrasts include:

0 vs. 1 or 1C: Sociodemographic-only base model (0) versus expanded 35-condition checklist (1) or Charlson 12 condition count (1C)

1 vs. 2-M/P: Expanded checklist condition count (1) versus population QOL weights for expanded checklist conditions (2-M/2-P)

1C vs. 2C-M/P: Charlson 12 count (1C) versus population QOL weights for Charlson 12 conditions (2C-M/2C-P)

2-M/P vs. 3: Population-weighted QOL (2-M/2-P) versus individualized QDIS ratings for expanded condition checklist (3)

2C-M/P vs. 3C: Test of population-weighted QOL versus individualized QDIS ratings for Charlson 12 conditions

4C vs. 3C: Test of mortality-weighted Charlson versus individualized QDIS ratings for Charlson 12 conditions

Model & MCC Estimation Method Base Count Pop. weights Ind. QDIS items Description of MCC Impact Score (MCCIS)

QDIS-MCC Models

0 Base model—sociodemographics only X

1 Simple chronic conditions count X X Count of all reported conditions on expanded 
checklist

2–M/P Population-weighted MCS/PCS score X X Separate regressions for MCS & PCS on 35 (0/1) 
conditions in developmental sample; weighted 
sum of all reported conditions using corre-
sponding MCS/PCS population weights

3 Individualized QDIS-weighted MCC score X X Separate regressions for MCS/PCS, individu-
alized by adding global QDIS ratings for all 
reported conditions (for each participant)

Charlson Models

1C Charlson 12 count X X Sum of all reported Charlson conditions

2C–M/P MCS-/PCS- weighted Charlson score X X Separate regressions for MCS & PCS on 12 
(0/1) Charlson conditions in developmental 
sample; weighted sum of all reported Charlson 
conditions using corresponding MCS or PCS 
population weights

3C Individualized QDIS-weighted Charlson X X Separate regressions for MCS & PCS; indi-
vidualized by adding global QDIS ratings for 
all reported Charlson conditions (for each 
participant)

4C Mortality-weighted Charlson score X X Pseudo-Charlson score for 12 conditions using 
1987 published mortality rates
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Aggregations of CCI conditions paralleled methods 
used with the 35-condition checklist, including condition 
counts, population-weights, and individualized scores. 
CCI model tests and results were ordered to correspond 
with analogous QDIS-MCC models. A fourth model 
utilized CCI published mortality weights. Population 
weights (Model #2C-M, 2C-P) were derived and compar-
isons made using the same methods described above for 
Model #2.

Adjusted  R2 was estimated for each regression model 
and was the primary outcome of interest. Akaike infor-
mation criterion (AIC) [61] was used for objective inter-
pretation and model comparison; smaller AICs indicate 
more parsimonious models. Model comparisons focused 
on the difference in AIC (delta) between a referent model 
and an alternative nested model hypothesized to be an 
improvement. As recommended, the absolute value of 
AIC estimates were ignored as were deltas < 2 [62, 63]. 
Deltas > 10 were accepted as sufficient evidence that 
models with larger AICs performed worse. Analyses were 
conducted in Stata (Stata Corp, College Station, TX). 
AIC has previously been reported in studies comparing 
performance of comorbidity indices [64–66].

To estimate and illustrate the practical implications 
of differences in magnitude of case-mix adjustments, 
Fig.  1 compares adjusted PCS scores for participants 
with OA in the developmental sample (N = 1135) at 

baseline. These OA-sample-only analyses controlled 
for baseline sociodemographic variables as in analyses 
for the total sample as described above (also listed in 
Table  5 footnotes). Model #2 applied the OA-specific 
PCS population adjustment to everyone; Model #4C 
applied the CCI mortality adjustment to everyone; 
whereas Model #3 applied the individualized QDIS 
global item adjustment distinguishing groups differ-
ing in impact attributed to OA (with A lot and Extreme 
categories combined). Accordingly, population-
weighted models, which assign the same adjustment 
to everyone with OA, appear as higher or lower hori-
zontal lines across levels of OA impact in the Figure. 
In contrast, Model #3 individualized QDIS-OA adjust-
ments are graphically displayed as four box plots, each 
indicating the median, interquartile, and total range of 
PCS outcomes adjusted for QDIS individualized impact 
attributions.

Aim 2: cross‑validation of MCC impact model comparisons
All cross-sectional and longitudinal models above were 
cross-validated independently (cross-validation sam-
ple, N = 3416) to examine the generalizability of results. 
Adjusted  R2 and AIC [61] were used for interpretation 
of model predictive validity and parsimony using the 
same methods for as described above for Aim 1.

OA-specific 
Impact Category None A little A lot Extreme

Overestimated by 
≥ .5 SD 24% 50% 82% 96%

Underestimated 
by ≥ .5 SD 20% 5% <1% <1%

Physical 
Component 

Summary
(PCS)

Population Mean (M=50, SD=10) 

Model #4C: Charlson population 
mortality weighted comorbid conditions 
Model #3: QDIS individual weighted 
comorbid conditions 

Fig. 1 Effects of MCC impact adjustment methods on PCS outcome predictions by OA-specific QOL impact
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Results
Samples and measures
Demographic characteristics for the developmental and 
cross-validation samples, as summarized in Table 2, were 
similar except that the developmental sample tended to 
be older, on average, and less often unemployed. Preva-
lence rates for each condition ranged from 0.5 to 11.3% 
for the 12 Charlson (CCI) conditions and from 0.5 to 8.4% 
for the 35 checklist conditions in the more representative 

cross-validation sample. With one exception (HIV or 
AIDS), prevalence rates were consistently much higher 
for the developmental sample as expected given the 
oversampling of pre-ID conditions. The percentage of 
respondents reporting one or more conditions was much 
lower (28.6%) for the 12-condition CCI in comparison to 
the 35-condition checklist (76.8%). MCC counts ranged 
from 0 to 31; distributions were highly skewed for the 
35-condition checklist, with 35% requiring individualized 

Table 2 Characteristics of developmental and cross-validation samples

a Retired due to disability. bHomemaker, student, other. Joint problems and limb limitations were not counted as separate conditions if the participant reported 
osteoarthritis or rheumatoid arthritis. cCondition used in estimating Charlson CI

Developmental 
Sample (N = 5418)

Cross‑Validation 
Sample (N = 3949)

Developmental 
Sample (N = 5418)

Cross‑Validation 
Sample 
(N = 3949)

Age Condition (%)

Mean (SD) 59.5 (13.7) 48.3 (16.5) Angina 8.0 2.1

Range 18–7 18–94 Myocardial  infarctionc 2.3 0.7

Male (%) 42.8 49.5 Congestive heart  failurec 8.8 1.7

Race/Ethnicity (%) Diabetesc 41.1 11.2

White non-Hispanic 79.9 77.8 Asthmac 31.3 11.3

Black non-Hispanic 7.9 8.5 COPDc 11.7 3.4

Hispanic 5.9 8.0 Kidney  diseasec 7.2 1.8

Other non-Hispanic 6.3 5.7 Osteoarthritis 38.8 11.1

Education (%) Rheumatoid  arthritisc 16.7 5.1

 < HS graduate 3.3 6.7 Allergies, chronic 33.8 19.2

High school graduate 18.4 27.4 Allergies, seasonal 50.4 36.6

Some college 38.0 31.9 Anemia 16.6 9.2

College graduate 40.3 34.0 Cancer (non-skin) c 11.6 6.1

Income (%) Chronic back problems 33.9 17.9

 < $20,000 12.5 14.2 Chronic fatigue syndrome 4.3 2.2

$20,000–39,999 21.6 21.1 Depression 19.5 12.1

$40,000–99,999 48.6 41.9 Dermatitis/skin conditions 14.9 9.4

$100,000 + 17.3 22.8 Enlarged prostate (BPH) 11.2 5.3

Employment Status (%) Erectile dysfunction 12.6 5.4

Employed 38.4 54.9 Fibromyalgia 7.2 2.6

Unemployed 4.3 7.2 Hearing, trouble 20.7 10.7

Retired due to age 32.5 16.2 HIV or  AIDSc 0.5 0.5

Disableda 14.3 6.7 Hypertension 58.4 30.9

Otherb 9.8 14.1 Hypothyroidism 16.9 8.5

Missing 0.7 0.9 Irritable bowel syndrome 12.8 7.3

Joint problems, foot/ankle 20.2 9.9

Generic QOL Mean (SD) Joint problems, hip/knee 40.9 19.9

SF-8 MCS 49.3 (9.9) 50.5 (9.4) Limb, limitations in use 12.8 5.8

Liver  Diseasec 3.1 1.9

SF-8 PCS 44.2 (10.5) 50.0 (9.0) Migraine headaches 18.7 13.1

Obesity 35.0 17.2

Osteoporosis 11.4 5.1

Strokec 5.2 2.1

Ulcer/stomach  diseasec 13.8 7.8

Vision, trouble 15.0 9.2
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QDIS impact item administrations for four or more con-
ditions (Model #3). Accordingly, respondent burden 
varied substantially (range = 0–65 items; interquartile 
range = 1–14 items; median = 7 items), with EDC-mon-
itored administration times for the combined chronic 
condition checklist and single global QDIS impact item 
for each reported condition ranging from 2 to 3 min for 
most respondents.

Descriptive statistics for all MCC aggregation meth-
ods across models and generic QOL outcomes in the 
developmental sample are summarized in Table  3. The 
highly variable individualized MCC scores (range = 0–91, 
mean = 10.94) used in Model #3 predictions reflect 
the combined effects of reporting more conditions 
(range = 0–31, mean = 5.78) as well as differences in their 
QOL impact. Mean PCS for the developmental sample 
was approximately ½ SD lower for the developmental 
sample, as expected for a sample over-representing pri-
marily physical conditions.

Population‑based PCS and MCS Weights for chronic 
conditions
As shown in Table 4, unique effect estimates for nearly all 
35 conditions were negative in predictions of both PCS 
(34/35) and MCS (31/35) and significant for PCS (23/35) 
and MCS (17/35), indicating worse QOL. Overall, effects 
(weights) tended to be larger for PCS, exceeding 0.25 
SD (b > 2.50) for 10 conditions (CHF, stroke, COPD, RA, 
OA, chronic fatigue, fibromyalgia, chronic back, limited 
use or arm/leg), compared to three for MCS (depression, 

chronic fatigue, and vision problems). With few excep-
tions, conditions not included in the CCI showed signif-
icant effects on one or both outcomes. As expected for 
respondents without chronic conditions (holdout group), 
the intercept estimates for Models #1–3 (all but the base 
model) were well above the population mean of 50 for 
both PCS and MCS.

Evaluations of MCC impact aggregation methods 
and models
Comparisons of MCC impact aggregation methods dem-
onstrated the increased explanatory power of all meth-
ods over the sociodemographic-only base model, with all 
F-ratios > 38.2, all p < 0.0001. As shown in Table 5, cross-
sectional models (#1–3) progressively improved explana-
tory power in a manner consistent with hypotheses, as 
evidenced by increases in adjusted  R2 and decreased AIC 
values, the latter indicating more parsimonious models 
for deltas between models satisfying the > 10 criterion. 
Specifically, in comparison with sociodemographic-
only regression models (MCS  R2 = 0.08, PCS = 0.09) and 
Charlson CCI models (MCS  R2 = 0.12, PCS = 0.16), the 
variance explained in PCS increased to 31% using sim-
ple MCC count (Model #1), to 39% using PCS population 
weighted scores for 35 conditions (Model #2-P), and to 
42% using individualized weights for those conditions 
(Model #3). Variances explained in MCS increased to 
22% with simple MCC count (Model #1), 31% using MCS 
population weights for 35 conditions (Model #2-M), 
and 33% using individualized condition weights (Model 

Table 3 Summary information for MCC methods, models, and generic outcomes in cross-sectional developmental sample (N = 5,490)

CC  chronic conditions, pop.  population, ind.  individualized, PCS  Short Form-8 Physical Component Score, MCS  Short Form-8 Mental Component Score.*Observed 
range. aDisplayed in Fig. 1 example limited to OA index condition (N = 1235) comorbidity impact

Models & Outcome Variables # of CC Simple Count Pop. 
Weight 
MCS

Pop. 
Weight 
PCS

Ind. 
QDIS 
Weight

Pop. 
Weight 
Mortality

Mean SD Range*

QDIS-MCC Methods

1: Simple chronic conditions count 35 X 5.78 3.49 0–31

2–M: Population-weighted MCS score 35 X 47.81 5.01 20.49–53.23

2–P: Population-weighted PCS score 35 X 44.65 6.49 3.43–53.87

3: Individualized QDIS-weighted MCC score 35 X 10.94 9.53 0–91

4: Individualized OA comorbid  CCa score 35 X 16.74 12.6 0–102

Charlson Index Methods

1C: Charlson 12 count 12 X 1.37 1.09 0–10

2C–M: MCS-weighted Charlson score 12 X 46.57 2.57 26.18–49.40

2C–P: PCS-weighted Charlson score 12 X 44.23 3.66 18.63–47.91

3C: Individualized QDIS-weighted Charlson 12 X 2.32 2.61 0–26

4C: Mortality-weighted Charlson score 12 X 0.68 1.14 0–16

Generic Outcomes

MCS 49.59 9.76 10.1–68.5

PCS 44.82 10.5 12.8–66.3
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#3). In support of the generalizability of cross-sectional 
results, the above pattern of increased predictive valid-
ity (adjusted  R2) and improved model parsimony (AIC) 
progressively across the models was replicated in analy-
ses limited to 12 CCI conditions (see the bottom half of 
Table 5). Further, QOL-weighted models (#1C-3C) con-
sistently outperformed population mortality-weighted 
CCI in analyses limited to 12 CCI conditions (Model 
#4C).

Results from longitudinal comparisons of models pre-
dicting PCS and MCS are presented in the right-most 
columns of Table  5. Although longitudinal adjusted  R2 
estimates were typically lower than cross-sectional esti-
mates for both PCS and MCS, the progression of  R2 and 
AIC estimates across models was largely the same. As 
with cross-sectional tests, longitudinal predictions were 
stronger for PCS in comparison to MCS. To summarize, 
the observed pattern of results across methods supports 

Table 4 Estimates of unique effects of chronic conditions on MCS and PCS used in MCC weighting, developmental sample (N = 5490)

MCS  Short Form-8 Mental Component Score, PCS  Short Form-8 Physical Component Score. aConditions common to 35-item and Charlson checklists are in italics. 
***p < 0.001; **p < 0.01; *p < 0.05. Each regression model adjusted for main effects of age, gender, education, and race/ethnicity

Chronic  conditiona N MCS PCS

b SE t b SE t

Hypertension 3185 −0.27 0.25 −1.05 −1.40 0.26 −5.40***

Myocardial infarction 123 −0.76 0.77 −0.99 −2.43 0.78 −3.10**

Angina 433 0.05 0.44 0.11 −1.36 0.45 −3.04**

CHF 477 −1.24 0.42 −2.96*** −3.67 0.43 −8.59***

Diabetes 2231 −0.64 0.26 −2.45* −1.17 0.27 −4.40***

Stroke 285 −0.95 0.53 −1.77 −2.59 0.54 −4.78***

Cancer 629 −0.95 0.37 −2.60*** −0.60 0.37 −1.63

Asthma 1700 −0.77 0.28 −2.80** −0.51 0.28 −1.80

COPD 634 −0.94 0.37 −2.52* −4.27 0.38 11.36***

CKD 387 −0.14 0.46 −0.31 −1.82 0.46 −3.94***

RA 909 −0.97 0.32 −3.00** −4.35 0.33 −13.26***

OA 2107 −0.24 0.28 −0.84 −4.90 0.29 −17.08***

Osteoporosis 623 −0.08 0.38 −0.20 −1.13 0.39 −2.93**

Ulcer 753 −0.99 0.35 −2.85** −0.94 0.35 −2.67*

Liver disease 169 −0.78 0.67 −1.16 −0.88 0.68 −1.29

Irritable bowel syndrome 694 −1.57 0.36 −4.35*** −0.36 0.37 −0.98

Obesity 1900 −0.77 0.26 −2.93** −1.76 0.26 −6.63***

HIV or AIDS 27 −0.17 1.63 −0.11 −0.10 1.65 −0.06

Anemia 897 −0.29 0.33 −0.91 −0.64 0.33 −1.95

Depression 1058 −7.82 0.31 −25.09*** −0.08 0.32 −0.26

Chronic fatigue syndrome 235 −3.55 0.61 −5.81*** −3.25 0.62 −5.25***

Fibromyalgia 390 −1.67 0.49 −3.40** −3.43 0.50 −6.87***

Migraine headaches 1013 −0.58 0.31 −1.84 −0.63 0.32 −1.97*

Prostate disease 616 0.01 0.41 0.03 −0.47 0.42 −1.12

Erectile dysfunction 684 −0.87 0.40 −2.20* −1.00 0.40 −2.48*

Hypothyroidism 919 0.18 0.32 0.57 0.00 0.32 −0.01

Allergies, chronic 1836 −0.24 0.27 −0.89 −0.10 0.27 −0.37

Allergies, seasonal 2739 0.19 0.24 0.76 0.92 0.25 3.70***

Chronic back problem 1840 −1.63 0.27 −6.17*** −4.15 0.27 −15.47***

Vision trouble 814 −2.64 0.33 −7.89*** −2.15 0.34 −6.33***

Hearing, trouble 1124 −0.43 0.30 −1.46 −0.80 0.30 −2.66***

Osteoporosis 812 −0.84 0.32 −2.59* −0.92 0.33 −2.80**

Limited use arm/leg 697 −1.12 0.62 −1.82 −6.55 0.63 −10.42

Foot/ankle joint problem 1099 −1.74 0.55 −3.16** −1.42 0.56 −2.54*

Hip/knee joint problem 2225 −0.15 0.42 −0.35 −2.49 0.42 −5.87***

Constant (Intercept) 51.93 0.44 53.46 0.40
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progressive incremental validity beyond a sociode-
mographic-only base model of an expanded condition 
checklist, population QOL over mortality weighting, and 
individualized over population QOL weighting for pur-
poses of estimating PCS and MCS in cross-sectional and 
longitudinal analyses.

Figure 1 illustrates the practical implications of differ-
ences in MCC multimorbidity and comorbidity[38, 39] 
aggregation methods for predictions of physical QOL 
(PCS) for adults with osteoarthritis (OA), the most 
prevalent pre-ID condition in the developmental sam-
ple (N = 1135). Predictions from these models, yield-
ing a single effect size estimate for conditions comorbid, 
among those with OA are shown in Fig. 1 as horizontal 
lines because they apply the same (average) adjustment 
to all OA-specific strata. Lower and higher lines, respec-
tively, indicate larger and smaller adjustments in PCS 
across methods. Model #4C  (R2 = 0.162, p < 0.001), which 
applied a population mortality-weighted adjustment 
of −0.11 SD (t = −21.9, p < 0.001) shown by the green 
dashed line, is the smallest population-weighted adjust-
ment. From Model #3  (R2 = 0.542, p < 0.001), the blue 
dotted line shows a much larger adjustment of −0.53 
SD (t = −25.5, p < 0.001) using the individualized sum of 
QDIS comorbidity ratings. It is noteworthy that adjust-
ments for the latter two models did not include OA, 
which is excluded from the CCI and omitted, by design, 
for estimating QDIS MCC comorbidity in OA analyses.

In contrast, Model #3  (R2 = 0.394, p < 0.001) adjust-
ments are displayed in Fig. 1 as blue box plots of PCS out-
comes for individuals in each OA-specific QDIS global 
item impact category. Increases in separations between 
categories in adjusted PCS scores are roughly constant at 
about -0.5 SD, as box plots decline with increasing QOL 
impact attributed to OA (from left to right). In compari-
sons with the None category, PCS means were lower for 
Little (t = −9.46, p < 0.001), Some (t = −20.82, p < 0.001) 
and Lot/Extremely (t = −30.24, p < 0.001) impact cat-
egories. As noted for the developmental sample analysis 
(Table  5), controlling for comorbidity using the QDIS 
method substantially increased  R2. For OA and other 
pre-identified conditions, these gains in accuracy were 
almost entirely due to substantial reductions in score 
range and interquartile ranges within categories (data not 
reported).

In comparisons with population norms, results from 
individual estimates illustrated in the four blue box plots 
reveal systematic biases: (1) errors under-estimated PCS 
outcomes for adults attributing No or Little specific 
impact to OA and (2) errors over-estimated outcomes 
for individuals attributing higher levels of specific impact 
to OA. The percentages of over- and under-estimation 
errors exceeding minimally important difference (MID) 
criterion [67] are shown at the bottom of Fig. 1 for each 
OA-specific impact category, with overestimations 

Table 5 Summary of variances explained and model fit by method and model, developmental sample

MCS  Short Form-8 Mental Component Score, PCS  Short Form-8 Physical Component Score. F-ratios for QDIS-MCC and Charlson models not reported, all p < .001
a df = degrees of freedom in the numerator
b Base model holdout group (female) was female, age 45–64, white, and high-school graduate
c These weights from developmental sample regressions at baseline were used for all Model 2 comparisons, cross-sectional and longitudinal including cross-
validations
d Model 3 used developmental sample baseline individualized QDIS scores weights (see text). All models adjusted for Base model main effects of (# of categories): age 
(6), gender (2), education (4) race (4). Intercept (holdout group) was ages 18–34 years, female, with 12 years of education and white. Intercept values (constants) varied 
across models, from 43.8 to 52.8 for PCS and from 45.8 to 52.7 for MCS. Values were lowest for Base and highest for Model 3, respectively

Model & Description dfa Cross‑sectional models N = 5490 Longitudinal models N = 2170

MCS PCS MCS PCS

Adj  R2 AIC Adj  R2 AIC Adj  R2 AIC Adj  R2 AIC

QDIS-MCC Models

0 Base model—sociodemographic variables  onlyb 12 0.08 40,181 0.09 40,905 0.06 15,970 0.09 16,145

1 Simple chronic conditions count 13 0.22 39,221 0.31 39,400 0.17 15,691 0.26 15,675

2–M/P Population-weighted MCS/PCS  scorec 47 0.31 38,560 0.39 38,656 0.25 15,479 0.34 15,433

3d Individualized QDIS-weighted MCC score 13 0.33 38,435 0.42 38,460 0.26 15,438 0.36 15,383

Charlson Models

1C Charlson 12 count 13 0.13 39,858 0.18 40,340 0.10 15,884 0.15 15,987

2C–M/P MCS-/PCS-weighted Charlson score 24 0.13 39,817 0.19 40,237 0.10 15,861 0.16 15,970

3C Individualized QDIS-weighted Charlson score 13 0.20 39,420 0.29 39,543 0.17 15,705 0.23 15,770

4C Mortality-weighted Charlson score 13 0.12 39,912 0.16 40,447 0.09 15,889 0.14 16,016
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ranging from 24 to 96% and underestimations from 20% 
to < 1% across impact groups.

Cross‑validation of MCC impact aggregation models
As summarized in Table  6, independent cross-valida-
tions yielded the same pattern of results as observed with 
the developmental sample, replicating the progressive 
increases in  R2 and decreases in AIC values, as hypoth-
esized, for both PCS and MCS scores in cross sectional 
and longitudinal analyses. However, some adjusted  R2 
estimates were slightly lower than observed with the 
developmental sample.

Discussion
Systematic comparisons among unique features of dif-
ferent MCC aggregation methods, while holding other 
features constant, linked improved accuracy to: (a) use 
of an expanded list of chronic conditions, (b) population 
weighting of reported conditions in terms of their QOL 
impact, as opposed to mortality weighting, and (c) use of 
individualized estimates of QOL impact for each condi-
tion rather than its population weight that ignores indi-
vidual differences within each condition. An expanded 
chronic condition checklist paired with individualized 
disease-specific QOL impact measures standardized 
across multiple chronic conditions (QDIS-MCC) enabled 
the largest improvements increasing the accuracy of pre-
dictions of physical and mental QOL outcomes into the 
moderate to strong model range [9].

Our findings have implications for purposes of group 
comparisons in outcomes research and improving indi-
vidual patient quality of care. These include: (a) more con-
fidently attributing QOL differences observed between 

self-selected groups to the effects of group membership 
as opposed to case-mix differences [3–8, 12–16], (b) add-
ing better QOL estimates of individual experiences of 
clinical care and treatment outcomes, consistent with the 
principles of clinimetrics [11] to improve tailored treat-
ment decision making [16, 18], (c) determining whether 
individuals are currently functioning and feeling better/
worse than expected for their age, comorbid conditions, 
and other characteristics; and (d) identifying those more 
or less likely to experience clinically significant improve-
ment as a result of treatment [15, 16, 68–70].

Figure 1 for adults with pre-identified OA illustrates 
how individualized disease-specific impact ratings 
work to improve QOL prediction accuracy and reveals 
systemic patterns of substantial over- or under-esti-
mation errors from using the population main effect 
adjustments based on the legacy comorbidity methods 
studied. Applying the same population adjustment for 
all with a given condition tilts this teeter-totter pattern 
of errors up or down depending on adjustment magni-
tude, whereas individualized adjustments reduced both 
over- and under-estimation errors. Given that only 
errors > 0.5 SD units were counted, the large percentage 
of errors observed are likely of importance given that 
they exceed clinically, economically, and socially impor-
tant effect sizes in the range of 0.2–0.3 SD units rec-
ommended by developers of the generic QOL outcome 
measures studied [17, 53, 54, 67]. Although adjusted 
 R2 estimates were consistently lower for mental (MCS) 
compared to physical (PCS) predictions, improved 
incremental validity (or predictive validity beyond that 
provided by legacy methods) was consistently observed 

Table 6 Summary of variances explained and model fit by method and model, cross-validation sample

MCS  Short Form-8 Mental Component Score, PCS Short Form-8 Physical Component Score, df  degrees of freedom in the numerator. F-ratios for QDIS-MCC and 
Charlson models not reported, all p < .001. *Uses baseline individualized QDIS scores

Model & Description df Cross‑sectional models N = 3416 Longitudinal models N = 1153

MCS PCS MCS PCS

Adj  R2 AIC Adj  R2 AIC Adj  R2 AIC Adj  R2 AIC

QDIS-MCC Models

0 Base model – sociodemographic variables only 12 0.06 24,926 0.09 24,512 0.05 8487 0.07 8405

1 Simple chronic conditions count 13 0.20 24,362 0.30 23,624 0.18 8317 0.24 8163

2–M/P Population-weighted MCS/PCS score 13 0.30 23,930 0.40 23,096 0.25 8221 0.34 8000

3* Individualized QDIS-weighted MCC score 13 0.30 23,944 0.41 23,048 0.26 8206 0.35 7998

Charlson Models

1C Charlson 12 count 13 0.12 24,703 0.21 24,024 0.12 8404 0.17 8277

2C–M/P MCS-/PCS-weighted Charlson score 13 0.12 24,703 0.22 23,980 0.11 8407 0.18 8258

3C* Individualized QDIS-weighted Charlson score 13 0.17 24,509 0.28 23,688 0.15 8354 0.24 8176

4C Mortality-weighted Charlson score 13 0.10 24,764 0.18 24,152 0.09 8435 0.14 8318



Page 12 of 16McEntee et al. Health and Quality of Life Outcomes          (2022) 20:108 

for individualized estimates in predictions of both PCS 
and MCS.

At the core of the improved MCC impact estimation 
is a psychometrically-sound summary disease-specific 
QOL impact score. Despite the breadth of QOL domains 
represented in the standardized QDIS item bank for each 
specific condition, those items are sufficiently homogene-
ous to justify a 1-factor model summary score [24, 25]. 
Further, the single global QDIS item representing each 
disease-specific bank correlates highly enough (r > 0.90) 
with the total item bank to justify its use in the short-
est possible 2–3  min QDIS-MCC survey, combining a 
standardized checklist and QOL impact item attribut-
ing impact specifically to each reported condition [24]. 
Although the evolving applications of psychometric the-
ory and methods [71] in parallel with clinimetric princi-
ples has not been without debate [72, 73], it is important 
to note that differences in their emphasis are comple-
mentary and that they share some commonalities [21, 
74, 75]. For example, the current study uses incremental 
validity methods promoted by clinimetricians [11] and by 
psychometricians [56]; both of which advocate for valid-
ity testing using clinical criteria.

In support of generalizing results, significant unique 
MCC effects in predicting PCS and MCS, as well as pat-
terns of larger effect sizes in the current study are con-
cordant with results from the US Medical Outcomes 
Study (MOS) [54], US general population surveys [53, 76, 
77], as well as studies in eight other countries [55]. For 
example, across common conditions, negative effects on 
PCS were largest for arthritis, heart, and lung conditions 
in the US, seven European countries and Japan. Given the 
consistency across samples and countries and languages, 
it has been suggested these estimates can be generalized 
as a basis for defining important effect sizes [55]. Accord-
ingly, for standardized record based and self-reported 
chronic condition checklists, the population weights doc-
umented in Table 4 and elsewhere [48] are recommended 
for use in achieving the advantages of QOL population-
weighted MCC impact scoring over simple counts or 
population mortality weighting without additional pri-
mary data collection.

The relatively large unique effects of OA, back prob-
lems, chronic fatigue, and fibromyalgia on PCS and 
depression on MCS, conditions not included in the CCI, 
may at least partly explain its relatively poorer perfor-
mance. The pattern of higher adjusted  R2 estimates for 
predictions of PCS compared to MCS based on MCC 
is also consistent with prior research [31, 33]. Increased 
variances explained by expanded condition checklists in 
the current study (adjusted  R2 0.39 and 0.34, respectively) 
are also consistent with prior US research (adjusted  R2 

0.45 and 0.31) [53]. Unfortunately, prior studies in Europe 
and Japan did not report model  R2 estimates [55].

There are noteworthy strengths and limitations of the 
current study. Data came from large, nationally repre-
sentative US population samples supplemented with 
pre-identified chronically ill adults, which enabled both 
interpretations of QOL in relation to more representa-
tive national norms and the greater precision from larger 
supplemental samples required for within-disease MCC 
comparisons. The potential shortcoming of regres-
sions overfitting data was addressed by cross-validation 
of model comparisons in an independent sample and 
data from a later time point. It is a strength of the cur-
rent study that (a) cross-sectional baseline developmen-
tal sample population weights for chronic conditions 
used in standardizing aggregate QDIS-MCC scores were 
cross-validated in an independent sample and (b) lon-
gitudinal (nine-month) outcome models replicated the 
overall pattern of cross-sectional predictions. Reliance on 
the 8-item MOS survey (SF-8) [24] estimates of chronic 
condition effects on PCS and MCS (effect sizes and 
adjusted  R2 estimates) is a potential limitation, although 
literature suggests otherwise [53, 78]. To address this 
concern, model comparisons were replicated for a ran-
dom subsample who completed the full-length 36-item 
MOS Health Survey (SF-36) in parallel with SF-8. Overall 
patterns of PCS and MCS results were comparable with 
results from other studies using the SF-36, SF-12, and 
SF-8 surveys [47, 53, 78].

Two other potential limitations are that all data were 
self-reported and collected electronically with no clini-
cal verification of diagnoses or condition severity, and it 
was assumed that participants can validly rate the QOL 
impact of one specific condition in the presence of MCC. 
Addressing the first, prior research has identified dis-
crepancies between patient self-report and administra-
tive data, with higher rates of disagreement for cancer 
or mental health diagnoses compared to diabetes [79]. 
However, other studies suggest that patient self-reported 
conditions perform equally as well in predicting QOL in 
comparison with comorbidity data obtained from medi-
cal records [80, 81]. To the extent reliance on self-report 
was a limitation, it is likely to have similarly effected all 
MCC aggregation methods tested. Second, QDIS global 
item and multi-item attributions to a specific condition 
have been shown to be sufficiently valid [27] in the pres-
ence of MCC. Specifically, for pairs of pre-identified and 
other comorbid conditions studied here (asthma, diabe-
tes, OA), correlational tests supported convergent (same 
condition-different methods and criteria) and discrimi-
nant validity (different conditions, same method) in more 
than 90% of tests [27]. Some noted exceptions involving 
MCC characterized by the same symptom (e.g., SOB) 
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warrant further study. In such cases, the individualized 
multimorbidity QOL impact aggregation provides a bet-
ter case-mix adjustment for predicting generic QOL out-
comes, in comparison with a simple count, population 
QOL- and mortality-weighted methods. While clinic 
data and judgement are still required to discern among 
confounded causes of patient experiences, attribution 
of ambiguous symptoms to a specific condition is not as 
informative as the extent of QOL impairment.

Finally, data limitations noted above limited method 
comparisons to 12 conditions common to the CCI and 
35-item checklist. Further, some CCI conditions required 
data that were only available for the developmental sam-
ple with pre-identified conditions. While the CCI was 
scored conservatively, consistent with previous stud-
ies [59], excluded conditions may have contributed to 
relatively poorer CCI performance. However, it should 
be noted that the CCI is less comprehensive, omitting 
more than a dozen conditions (e.g., OA) shown to signifi-
cantly diminish QOL [53, 76, 77]. The Elixhauser index 
[35, 82] is a more comprehensive alternative to the CCI, 
although it requires specific ICD coding (beyond 3 digits) 
for accuracy, still excludes conditions known to adversely 
impact QOL (e.g., fibromyalgia, migraines), and has lim-
ited potential to discriminate severity of impact within 
each condition. All comparisons of aggregation meth-
ods in terms of simple counts versus population QOL 
and mortality weighting, and individualized weighting in 
this study were standardized using the 12 common CCI 
conditions. The optimal number and selection of specific 
checklist conditions used to standardize adjustments for 
chronic condition case-mix differences in QOL outcomes 
monitoring warrants further attention.

Practical considerations present other potential limita-
tions, particularly for individualized QDIS-MCC impact 
assessments that require primary data collection, which 
increase costs and respondent burden. Whereas use of 
more practical generic QOL measures is increasing in 
EHRs, short-form solutions have only recently been avail-
able for disease-specific measures due to length of legacy 
tools and lack of disease-specific QOL impact compara-
bility across conditions [23]. Single-item QDIS measures 
with specific attributions to each condition reported in 
the current study are substantially more practical. They 
yield directly comparable scores that correlate highly 
with their full QDIS item bank for the same condition, 
and are valid in relation to full-length legacy measures of 
the same disease, despite their coarseness and lower reli-
ability [24, 27]. Supplementing the global QDIS item used 
for each disease in the current study with multi-item 
paper–pencil or internet-based CAT administrations of 
items making attributions to the same disease has been 
shown to increase precision for clinical research and 

practice. [24, 26] This adaptive logic is the next step when 
more reliable individualized estimates (e.g., likelihood of 
treatment relief ) are needed [16]. Feasibility, respondent 
burden reduction, and clinical utility of such adaptive 
logic were supported in a national registry pilot study 
before and after joint replacement, where responsiveness 
and high correlations between QDIS-OA, QDIS-MCC, 
and generic PCS outcomes were statistically significant 
despite a very small sample [83]. Other findings suggest 
there are points beyond which additional measurement 
precision may not be worth the burden and cost [26, 
41]. Further condition-by-condition research is recom-
mended to optimize adaptive logic for patient selection to 
maximize measurement efficiency. Other issues warrant-
ing further study are whether MCC aggregation methods 
shown to be more predictive of generic QOL are also 
more predictive of other outcomes (e.g., hospitalization, 
job loss, and costs of care). Given that simple condition 
counts have been shown to predict such other outcomes 
[8, 29], it is reasonable to hypothesize that individualized 
estimates will do even better.

To summarize, individualized single-item measures 
of QOL impact with standardized content and scoring 
across MCC, that differ only in attribution to a specific 
condition, provided a more practical method of aggre-
gating MCC QOL impact. This new comorbidity index 
(QDIS-MCC) was more useful than legacy MCC aggre-
gation methods for purposes of adjusting for case-mix 
differences in predicting generic physical and mental 
QOL outcomes. The QDIS-MCC short form combines 
a standardized chronic condition checklist with a single 
global QDIS impact item for each reported condition and 
required less than three minutes for most respondents 
to complete (median one minute for checklist, median 
two minutes for comorbid QDIS item administrations). 
This approach illustrates the potential for improving the 
staging of individual patients, deciding whether more 
reliable (e.g., additional) measurement is likely to be 
worthwhile, and providing a better adjustment for indi-
vidual and group case-mix differences in MCC burden 
for purposes of more accurately predicting generic physi-
cal and mental QOL outcomes. For comparative effec-
tiveness research, such advances can strengthen case 
mix adjustments essential to attributing differences in 
health outcomes across self-selected groups [57]. In clini-
cal practice, individualized disease-specific MCC QOL 
impact stratifications can provide actionable informa-
tion about the severity of MCC accounting for likely dif-
ferences in patient’s generic health status and outcomes. 
To assure the availability of QDIS-MCC forms for fur-
ther research by scholars and individuals for academic 
research, the non-profit MAPI Research Trust (MRT) 
is managing and distributing licenses for use worldwide 
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(https:// mapi- trust. org/) for a minimal handling fee. 
MRT is also handling commercial licenses to companies, 
healthcare delivery organizations, and others for com-
mercial applications.
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